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NOTATlON

1. Material and Fabrication Pro erties

material tensile yield, proportional limit stress

"mean" yield stress if plate and stiffener

material differ =  a A + a bt!/ A + bt!
os s op S

a ga
0 p

a om

I
a

0
yield stress in prevailing conditions, e.g.

2 -1/2a �-p + p ! for plate bending using the
0

Maxwell distortion energy criterion  so called

von Mises-Hencky yield condition!.

structural proportional limit in compressiona
ps

a � a =pa
o r Y 0

a /a stress ratio defining beginning of
ps 0

inelastic effects in compression  typical value

pr

E,G

E a a -a!

E a  a -a !
ps o ps

elastic, plastic Poisson's ratio

0.5 for welded ship panels!

longitudinal compressive welding residual

stress in the middle zone of the plate

extensional, shear modulii

structural tangent modulus da/dc in compression

from "stub column" type tests, otherwise estimate:

 a! for materials having a well defined yield

plateau by using the Ostenfeld-Bleich

quadratic parabolae



2. Grillage Geometry and Section Pro erties

longitudinal, transverse coordinates and

stiffeners measured from the corner of the

grillage.

normal deflection, central Fourier harmonic

w/Rja /b = w/tg plate deflection parameter
0

X,y

Wpw
mn

Plate element properties:

length, width, thicknessa,b,t

CL a/b plate aspect ratio

b/t ~a,TE plate slenderness
0

Et /l2  l-p ! plate flexural rigidity3 2

Stiffener properties:

subscripts 'Y' and "y" are always first and denote X and Y

stiffeners respectively

d,z,A ,t depth, centroid height, area, web thickness
s w

E,Is' t

,I
0

MI about web, polar NI about toe I = Et + I

St. Venant torsion constant for stiffener

l/3 t ds for thin-walled open cross-sections3

4A /  l/t! ds for unperforated thin-walled2

closed cross-sections  reduced when perforated

in the ratio area of holes/gross area of wall!.
2

I,ongitudinal warping constant = l/4 I d forz

symmetrical stiffeners.

lv

ÃI  moment of inertia! in web plane about centroid, toe



where R = a � tripping wave length for panel

A/m, 8/n ... twisting wave lengths for

X,Y grillage stiffeners  m,n modes!.

~IA stiffener radius of gyration
s s

/I for computing stiffener-plate properties
t s

l +  z/r !

Gri~lacre stiffener pl-ate properties:

A /bt, A /at area ratios, stiffener/plate
xs ys

t l + y !, t l + y ! "mean" thicknesses for
X Y

computing average applied stresses o = N /tX X X

YX yy

t,t
X

= N /t

t l + y + y ! true mean thickness of stiffened
X

plate for weight consideration

t be/b + Yx!, t a /a + Y

effective thickness for computing compression

stresses for panel or grillage failure

t,tXe' ye

a = N /t , a = N /tx,e x xe' y,e y ye

y+ i6 effective MI � assumes flange andI
s

I
e

trated at outer fiblatp e areas concen ers

effective plate/total plate

xe xe

stiffeners and effective plate.

r
ce

2. Grillage Geometr and Section Properties  Cont'd!
2 2

J
t

J + m Z  I z + !'! /Gk twis ting rigidity
2

z



 A/B![I b/I a] orthotropic aspectl/4
ye xe

ratio

[K l/Kl l j constrained orthotropic1/4
o ly 1 lxl

aspect ratio  where the K's are defined later!.
e

c

J xt � t
J

p ~ + q ~ tripping torsion
a

G
2Er xy

constant for the grillage deforming in the

 m, 1! mode where q =  q-l! / q+1! in general, or

2q/ q+l! when m/  q+l! is integer; likewise

p =  p-l! /  p+I! = l for large p.

D /~D> in ortnotropic plate notation.
xy x

The J twisting rigidities are defined above
t

under stiffener properties.

number of X,Y stiffeners  p ! 3, q any value!

positive integers representing the number of

half waves of the buckled grillage in the X,Y

directions. For general instability only  m,l!

modes are considered.

C A/E I , C B/E I dimensionless spring
x xe' y ye

stiffnesses at X,Y stiffener ends

moment/slope elastic stiffnesses at X,Y

stiffener ends

p

m,n

R,R
x y

rC
x

constraint-mode functions for grillage

instability theory for the general  m,n!
xm' lxm' 2xm,K ,K

K,K iKyn' lyn' 2yn mode

-V3.�

2. Grillage Geometr and Section Pro erties  Cont'd!



2. Grillage Geometry and Section Pro erties  Cont'd!

1 +  R /2mm q+1! ! [3 cot mm/2  q+1!

cot 3mm/2 q+1!] sin mm/2 + 3R /16m m
2 2 2 2

x

1 +  8R /3m m ! sin mm/2 + 3R /16m m2 2 . 2 2 2 2
X x

if m exceeds  q+1! significant errors can

occur in the approximation and the exact

expression above should be used.

1 + � + 13R /16! R /7r m K important2 2

x x xmK lxm
coefficient in vertical bending terms, and

tends to 5.33 as R becomes clamped.
x

1 + R /16m m K coefficient for the twist-2 2 2
x xmK 2xm

ing terms, and tends to 1.33 as R becomesX

clamped.

R for R , n for m and q for p. However, we are often
Y X

only concerned with the  m, 1! mode in which case

1 + 8R /3' + 3R jl6m
2 2 2

Y YK yl
1 + � + 13R /16!R jm' K

2

Yly 1

1 + R /16' K
2 2

Y yl2yl

 sin mm/2 + R /8! sin n7r/2 + R /8!
x YK

Xy

shorthand notation

= sin m7rx/A, sin nIry/B

sin 2m@x/A, sin 2nmy/B, etc.

S,Sx' y

2x 2y
etc ~

sin n~r/ p+1! for X beams,
sin moors/ q+1! for Y beams, etc.

S  S
r s

etc-

Similarly for cosine functions.

tNote: S = S = sin nlrb/B = sin n~rj p+1! = S ]rb y=rb r

Similarly the yn functions are obtained by interchanging



3. Stress notation

km D/tb plate elastic buckling stress2 2

pE
3. 62a /0 pinned long plate a > b, p = 0. 32

6.3a /g clamped long plate a > b, p = 0.32

m E r /a pinned Euler column stress2 2 2
ceCE

for unsupported span a.

2m E
2

t B
2

orthotropic plate pinned
a

oP

buckling stress when I' = 0  twisting ignored!
Xy

and a > l.
0

a /a slenderness ratio yield-elastic buckling
o E

stress

=a /a failure stress ratio
u 0

ay+b/b
e e

where a is value of
e

a
0

y+ 1 edge stress at failures

a /R3 assumed shear yield stress
0c

0

lateral pressure

in-plane loadsN,NX' y

= a<E/ aCE � a ! local magnification factor
for X stiffeners between intersections

aGE/ aGE � a ! overall magnification factor
X

for grillage bending between supports;

assumed to be applicable to X and Y stiffeners

providing first mode �,1! value of a is used.

m
xo



ABSTRACT

An explicit discrete beam solution has been derived for

biaxial compression buckling of an orthogonal stiffened-plate

grillage with sides and ends elastically restrained against

rotation. A method is provided for quickly estimating these

constraints, and for allowing for coupled buckling effects

from adjoining structure. Twisting of the stiffeners about

their plate connection is included, as are inelastic effects.

Accuracy is considered to be well within the lO-l5 per cent

required. for most design purposes. Typical ship examples

indicate side constraints to be nearer clamped than pinned,

which can approximately double the buckling stresses. The

report includes a discussion of edge constraints, inelastic

effects and effective plating. The theory has been programmed

for design use, and safety is discussed, albeit tentatively,

since there is a dearth of experimental confirmation.



INTRODUCTION AND BACKGROUND

Explicit analysis equations and graphs have existed for

some while for estimating the overall elastic stabilit, of a

ship's deck or shell structure between say transverse bulkheads.

The structure can be treated either as a uniform e;Iuivalent

orthotropic plate whose flexural and torsional rigidities

in orthogonal directions represent the combined strength o.

stiffeners and plating [1,2J, or as grillages of discrete

beams in which the plating is represented by effective

flanges acting with the stiffeners according to simple beam

theory [3]. Solutions can be obtained quickly by the designer

using slide-ruLe or desk calculating machines.

The most serious limitation in these methods i- that

they are confined to the classical boundary conditions of

simple support or clamped edges. Simple supports are usually

assumed on the premise that the results will be conservative,

and that in any case great accuracy should not normally be

required in good design because as a mode of failure general

instability should be avoided by using suitably large safety

margins. There are sound. reasons for this, not the least being
the finality of collapse and the known sensitivity of collapse

loads to overall shape imperfections which commonly arise

during the fabrication of lightweight deck and hull

grillages. Furthermore, this philosophy would lead to

inelastic collapse at loads which are known to be somewhat

References � listed at end of report.



less affected by variations in assumed rotational boundary

constraints than are elastic collapse loads.

However, in spite of this knowledge being readily

available for many years, recent evidence [4,5] has indicated

that in certain existing frigates and destroyers the longi-

tudinal compressive stresses experienced in steel super-

structure decks  which are integral members in the ships'

cross-section resisting vertical bending! may have approached

or even exceeded the level required for overall buckling

assuming simply supported boundaries. Furthermore, these

stresses are appreciably below the elastic limit for the

material. Tndependent studies by the present author confirmed

these low general instability load factors, and also the

equally low safety margins against inter-beam collapse [6].

With these findings the authors' immediate concern was to

 a! discover why these decks had not yet shown signs

of failing in a general manner, and

 b! formulate for the Royal Navy a more precise

philosophy than exists at present for the design

of orthogonal grillages to withstand high compressive

loads.

As mentioned in the discussion of reference [5], the main

reason for  a! was considered to be the beneficial effects

arising from the rotational constraints which exist at the

unloaded sides of the deck grillages. For "long" orthotropic

plates having negligible torsional rigidities it can easily



be demonstrated that clamping all edges increases the elastic

general instability stress 2.24 times above the simple support

value. Releasing the rotational constraints on the loaded

ends reduces the buckling load, but this only becomes appre-

ciable at low aspect ratios. For ratios greater than about l,

it is therefore the constraint on the unloaded sides which are

most important. The "orthotropic aspect ratio" of many deck

grillages is greater than unity, and the constraints provided

by adjoining structure at the unloaded sides can be demonstrated

to be appreciable, and so it may be expected that actual elastic

buckling stresses will be appreciably greater than those cal-

culated assuming simple supports.

The subject appears also to be of considerable interest

in merchant ships [7,8]. Schultz [8] has demonstrated that the

deck fields adjacent to hatch openings of transversely framed

ships about 100m and more long often show theoretical pinned

general instability stresses appreciably lower than for local

plate buckling, and comparable with primary ship bending

stresses. Using orthotropic plate theory [7], he demonstrated

that buckling is strongly dependent upon the amount of elastic

restraint provided by the stiffened side shell plating. Schultz

further showed that the torsional rigidity of the deck beams

should not be ignored. Jojic [9] also considers general instabi-

lity to be important in some ship side structures.



It is the purpose of the present paper to examine this

topic, and to present sufficiently reliable and easily usable

data to get the designer into the "right street" during the

relatively early stages of design. Peference can then be

made to more exact computer theories for greater precision

should this be thought necessary. Such theories should

ideally be developed to take into account the de-stabilizing

effects that often arise from compression  and sometimes from

shear! in adjoining structure. The input data associated

with these more widespread structural elements is likely to

be lengthy, and would perhaps only be justified in certain

cases. There are similar reasons why these powerful

computer programs require appreciable effort if they are

used for parametric studies to generate design data. For

example, the permutations and combinations required to

investigate a practical range of grillage aspect ratios,

flexural and torsional rigidities, and boundary constraints

is very large. Considerable time is necessary to digest,

analyse and present the results in useful form.

The purpose of the present paper is therefore to

review previous work and develop the most promising method

of analysis which would lead to an explicit solution and

formulae of sufficient accuracy for use in early design and

yet retaining enough generality to cater for partial elastic

constraints at least on the important unloaded edges.



CHOICE AND SCOPE OF THEORY BY REFERENCE
TO PREVIOUS WORK

A literature survey was aided by Abrahamsen's useful

review of orthogonally stiffened plate fields [10]. It

appears that Svennerud, who took Vedeler's earlier work [3]

as a starting point, was the first to put forward an approxi-

mate energy method for the general instability of regularly

stiffened panels with partially constrained unloaded sides

[ll]. He later [12] improved the accuracy by more precisely

taking into account the "end fixation" of the cross stiffen-

ers. Referring to Figure 1, he considered the deflection

curve after critical failure to be of the form

mlT x
w = w Sin � f y!

0 A

where for practical purposes he chose as an approximate y

function the deflection curve of a beam with a uniformly

distributed load and with "degrees of fixation" fA and fB.

These fixities are not defined, but it is clear from the

analysis that they are the ratio of the  unknown! end

moments to the "fixed-end moments" of the clamped uniformly

loaded beam. This concept bedeviled naval architecture

for long enough. Quite apart from its use being fraught

with difficulty when applied to beams having unequal boundary

constraints, especially in the presence of unsymmetrical

loads, the concept has little physical significance which the

naval architect soon realises when he has to choose two



numbers f and f between 0 and 1.5. The only viable concept
A B

for defining elastic rotational constraints is the moment-

slope relationship which can quickly be estimated for practi-

cal structures [l3] as discussed in Appendix III.

Further Limitations in the value of this earlier work is

that it ignores completely the internal energy stored in the

rotational springs and serious errors arise when the number

of stiffeners in either set is small which precludes its use

for many structures. As shown in Appendix I, the spring

energy can be very appreciable in many ship cases. Later

similar work by Ahmed [14] shares this same deficiency, and

both methods ignore torsion. Nevertheless, they represented

significant advances towards the solution of a difficult

problem.

Schultz has extended Bleich's isotropic plate solution

[l5] to orthotropic plates [7], but some accuracy may be lost

when. there are only a few members in either set of beams.

More recently, Smith [5] has provided a discrete beam matrix

solution using lumped masses and finite elements. It can

cater for plate grillages with a high degree of irregularity,

and in which any degree of rotational and normal constraint

can be provided at the unloaded edges, the loaded edges being

considered simply supported. Buckling loads are calculated

automatically on a computer by iteration to any required

accuracy. Unfortunately, the solution as it stands is not

suitable for generating analysis equations or design data.



However, it is considered to be the most suitab1e program

available for checking specific designs where torsion can be

neglected. 1t was used for examining the accuracy of the

present more approximate but explicit analysis developed by

the author which also allows for the effect of torsion to

be examined explicitly.

Smith and Faulkner [16] demonstrated that accurate

results can be achieved with orthotropic plate theory when

considering the closely related eigenvalue problem of vibra-

tion of partially constrained uniform grillages. A solution

was presented for the case of elastically constrained sides,

which can also be used to estimate static buckling loads.

It was not possible to derive equivalent formulae for ortho-

tropic plates having elastic support at the ends as well as

the sides. However, it was noticed that the mode shapes cor-

responded exactly with the characteristic values and mode

shapes for uniform beams. It would therefore appear possible

to derive such formulae using Hearmon's method [17], employ-

ing characteristic functions. This course was pursued far

enough to realise that not only was the mathematics messy,

but recourse to characteristic value tables would still be

necessary; thus defeating the requirement for an explicit

formula.

Structures have also been treated by Smith [18] as

plate beam or folded plate systems which include panels of

orthotropic or isotropic plating with single direction



stiffeners in which the stiffening members such as tee-bars,

angle bars or top-hats are treated either as beams or as

assemblies of plate strips. In examining local vibration,

solutions may thus be obtained which take rigorous account

of coupling between the plating and stiffeners. Solutions

may also be obtained for orthogonally stiffened two and three

dimensional shells; stiffeners in one direction being treated

discretely while those in the perpendicular direction are

represented together with the plating as equivalent ortho-

tropic plates.

This short survey would be incomplete without reference

to the latest work of Chang et al.[19,20] . They provide a

general computer solution for biaxial stressing N and N
X

which caters for any "general" boundary conditions. The

solution is not directly helpful to the designer, and of

course provides no explicit formulae which this study seeks.

The same comment applies to a recent important paper by

Gisvold and Moe [21], who demonstrate the use of nonlinear

programming to solve combined in-plane as well as lateral

load problems.

Three additional papers dealing with transversely

stiffened plates deserve mention. Budiansky and Seide [22]

consider flexure and torsion and provide a series solution

which they reduce to closed form to provide useful formulae

and. charts for pinned stiffeners. Weiss [23] solves the

coupled differential equations for an orthotropic plate



having transverse stiffeners elastically restrained at their

ends. Chang mentions Sin-Ben Tzu [24] who considers mixed stif-

feners and refers to several papers published in Russia and China

covering the case when the load exists on the heavy beams. Per-

haps the best-known method for considering the buckling of plate

elements supported by the flexural and torsional characteristics

of transverse stiffeners is that developed by Bleich [l5].

FINAL CHOICE OF THEORY

The orthotropic plate theory is attractive, but is not easily

solved for the general case of partial constraints on all four

edges. Moreover, although it has been demonstrated fl6] that

when the number of transverse members is three or less ortho-

tropic theory can provide sufficiently accurate answers  within,

say, lO-l5 per cent!, this is not always the case and the theory

can be appreciably optimistic. There are many such grillages in

frigates, and. in one case it was found that orthotropic theory

was optimistic by about 40 per cent.. There is a tendency to in-

crease frame spacing to reduce costs, and so deck grillages fre-

quently have only a few beams or perhaps only one beam between

deep frames or bulkhead boundaries. For this reason, an alterna-

tive to the orthotropic plate approach was sought, though a solu-

tion has been presented earlier for the practically important

case of hinged loaded edges and partially constrained sides [l6] .

The author has often found energy methods to be surprisingly

versatile, and so, as the main method of solution, he chose the

energy test for stability, using Rayleigh's principle. This

solution leads to explicit equations which were used in gross-



panel strength analyses developed for early design use [25,26].

Moreover, the energy approach allows sideways bending of the

stiffeners to be more conveniently considered. This movement is

imposed on the stiffeners when any twisting occurs due to their

weld attachment to relatively rigid plating  in-plane! . By using

an iterative procedure, the solutions can, if required, take

account of:

 a! reduced stiffness and effective width associated

with large deflections of the plating, e.g., in

its post-buckled state

 b! reduced spring stiffness at the unloaded edges due

to axial force effects in adjacent structure

 c! inelastic effect  an alternative approach is also

suggested later! .

This approach was therefore pursued and developed to include the

energy associated with rotation of the stiffeners about their toe

connections with the plating. This is considered to be more

realistic than the conventional treatment of torsion effects and,

although it. is usually argued that these can safely be ignored

for open-section stiffeners, it will be seen that their inclu-

sion imposes no special difficulty. Moreover, Mansour has re-

cently concluded [27] that torsion effects become much more pro-

nounced as the compressive in-plane load approaches its critical

value; and of course it is necessary to include torsion when con-

sidering closed-section stiffeners or sandwich structures as might

be used, for example, in GRP decks. The author was encouraged

in developing the method to find that it. predicted the critical

loads for elastically constrained struts within two per cent;



and, finally, for regular grillages it was found to check very

well with Smith's more exact theory.

The inclusion of shear deformations was considered, but was

abandoned because of the considerable algebraic complexity which

results. The reduction in buckling loads caused by shear defor-

mations is only likely to be l.arge for deep grillages, where

general instability is an unlikely mode of failure anyway. An

approximate method of allowing for shear would be to reduce the

flexural rigidities of each member as for a strut by
2 -l

� + P 2!

where p is the ratio of effective flexural rigidity to effective

shear rigidity, and R is the half wave length of the buckled

deformation for the member.

The analysis was first developed to cater for two important

cases for which explicit solutions have been obtained for NX

loading'

Case l � Loaded ends simply supported, sides having

equal elastic rotational constraints; exten-

sion to unequal constraints is then discussed.

Case 2 � I oaded ends having equal elastic rotational

constraints, sides simply supported.

The first case would cover the majority of single skin ship gril-

lages, whereas the second case would be useful perhaps where the

loaded edge boundaries are provided by stiff transverse bulk-

heads, whose stiffeners are continuous with the axially loathed

grillage stiffeners. This would be especially important for low

values of orthotropic aspect ratio where the effect of loaded



edge constraint is known to be most marked. The important case

of pxo grillages faLls into this category and is considered.

Graphs are presented which show the effect of a wide range of

rotational constraints in raising buckling stresses for a variety

of torsional rigidities. The case of loaded ends clamped and

sides elastically constrained is also catered for by making use

of isotropic plate correlation as discussed in Appendix I.

OUTLINE OF THEORY AND RESULTS

a! The material is elastic and obeys Hooke's law;

b! Bernoulli-Euler bending theory, in which shear

deformation is ignored;

c! St. Venant torsion theory with Prandtl membrane

analogy solution for thin-walled stiffeners;

d! Twisting of the plating is ignored since numerical

examples have shown that for ships' decks and shells

this strain energy is very small compared with other

terms. The main effect of the plate is to act as

effective flange for the stiffeners, and this effect

is included in their combined rigidities;

e! Sideways bending and longitudinal warping of the

stiffeners is considered, but transverse warping is

neglected. The toe connection of the stiffeners

to the plating is assumed not to move sideways due

to the high in-plane rigidity of the plating;

f! Local instability of stiffener cross sections is

excluded. These forms of buckling usually occur at

stresses well above yield;

-12-



g! Loss of in-plane stiffness of the plating, arising
from initial stresses and deformations, buckling or

shear lag is allowed for insofar as cross-section

properties include an effective width of plating;

h! The rotational constraints at the stiffener ends

are considered to be linear elastic rotational

springs whose stiffness is unaffected by the axial

force. A conservative method of allowing for such

interaction is suggested later;

i! For convenience in defining the buckled deformation,

there is assumed to be only one neutral surface for

bending on the two perpendicular directions;

j! The axial stresses v ,o are assumed to be constant
x

across the effective cross section of the grillage;

k} The stiffeners and effective plating are assumed to

be essentially straight initially;

1! The direct energy of elastic compression of the

stiffeners is ignored.

Buckled form

It has been abundantly verified [28! that sufficient accu-

racy for practical purposes can usually be obtained by taking
for the special deformation that which is represented mathemati-
cally by the simplest algebraic expression satisfying the geo-

metrical and equilibrium boundary conditions imposed in the actual

structure. From orthotropic plate theory results for pinned

and clamped edges [l,2], it is known that the buckled form con-

sists of one half wave across the width, and. m half waves along

-13-



the length where m is a positive integer number depending on the

panel aspect ratio, rigidity ratio and constraints. There seems

no reason to suppose that for intermediate constraints the same

will not be true. However, to examine this point and to provide

general terms for a grillage bending solution, the energy expres-

sions were derived for the most general  m,n! buckled deformation:

w = w sin  mIrx/A! sin  n7ry/B! �+G sin  nvx/A! ! �+G2 sin  nIry/8!
1IU1 1

where the constants Gl,G2 are to be found from the moment-slope

boundary conditions.

If there were just a few longitudinal stiffeners, or if they

were of differing rigidities, then a double trigonometric series

involving m and n half waves would be recommended. For trans-

verse stiffeners alone a single series in m with n = 1 would be

adequate. In such cases the energy approach would lead to a sys-

tem of homogeneous linear equations in the unknown deflection

coefficients w , and by equating the determinant of this system

of equations to zero in the usual way we would obtain an equation

for determining the critical load. These cases are outside the

scope of the present paper and the reader is referred to the sec-

ond edition of reference [1] or to reference [3] for series solu-

tions where the supports are simple and torsion can be ignored.

General biaxial stress solution

The reader is referred to Appendix I for the key stages in

the development of the theory. It is a conventional energy solu-

tion using Rayleigh's principle [28] as a practical test for

elastic stability. Apart from the inclusion of the elastic

springs, the only novel feature is the inclusion of the sideways

torsion and bending of the stiffeners about their enforced line

-14-



of attachment with the plating. The biaxial stress solution

takes the form for the general  m,n! mode of buckling:

n A t K a
2 2

~ ~ Igloo =
xe 2xm

�2!

where  a /a ! is applied stress ratio and:
x

o = � a [K m / x + 2n I' K K1 [ 2 2 2
xGE 2 op lxm o xy 2xm 2yn

+ K n /m ]/K
4 2 2 �3!

lyn o 2xm

where a is the critical grillage elastic buckling stress
xGE

-15�

under uniaxial compression and the use of subscript  y! in a

is simply to denote the critical value of a in the presence ofx

a . The reason that. more importance is attached to v than toX

o is because this may be considered to be the primary load, for
y

example, as induced by ship bending. All terms are defined in

the notation, the K's being constraint-mode functions. The first

subscript is a number indicating the type of function, the sec-

ond is x or y denoting the stiffener set and constraints in-

volved., and the third is the mode number m or n. These K's

depend upon

~ the rotational constraints at the stiffener

ends R ,Rx' y

~ the mode wave numbers m,n

The two special cases of importance when m = n = 1 are plotted

as K , K2 versus R in Figure 2. o is the minimum "long" ortho-
op

tropic plate pinned buckling stress when twisting can be ignored

and u > l.
C

It can be shown that either one or both of m or n is always



unity, the  m,l! mode prevailing when ~ > 1 where a is a "con-

strained" orthotropic aspect ratio

1

u [K /K ]4
c o lyl lxl

�5!

a is the conventional pinned orthotropic aspect ratio.
0

At

lower values of o, we may expect the �,1! mode, except where
C

a > o in which case the  l,n! mode is possible. This is of
x

no practical interest.

Under biaxial conditions to find the critical a stress in
X

the presence of a smaller v  < 0.3o is suggested!, the value
X

of wave number for the lowest critical stress is

�7!
 y! c

The nearest integer value should be substituted in equations

 l2,13! to find the lowest ax,GE  y! '

The solution made use of a transformation from a summation

Also, as discussed in Appendix II, if 1 is an integer,
q + 1

then the last term inside the square bracket of equation �3!

disappears and is to be omitted, since all the Y beams will then

lie on nodal lines and will not be bent. The integer m is still

of course retained for the first term, and the lowest buckling

-16-

for each set of stiffeners into a more convenient integral. The

conditions under which the identity  eq.�!, Appendix I! is

satisfied are examined in Appendix II, where it is found to be

true with one minor approximation which arises in the three com-

ponents of the twisting strain energy. There are no approxima-

tions in the vertical bending terms, which dominate the solution

with open section stiffeners.



load may arise when m = q + 1 = A/a. The theory presented does

of course allow this special case of inter-frame or "panel"

collapse to be examined, but the author discusses this important

mode of failure more fully elsewhere [251 since it is more seri-

ously affected by residual welding stress actions.

The theory has been checked where possible against numerous

special cases which may be considered "exact" from references

[15,29,30,311 and has been found to agree within 5 per cent

 see Appendix I! . In all cases the theory was slightly optimis-

tic as expected using Rayleigh's principle. Calculations for

certain ship decks were checked against a more exact computer

theory [5] and agreement was everywhere within 10 per cent. This

agreement is considered reasonable, and lends confidence in the

wider use of the theory for early design purposes. Nevertheless,

experimental confirmation would be welcome.

Confirmation or otherwise would be particularly welcome for

even mode  m = 2, 4, 6...!. Adamchak has pointed out two inaccu-

racies which arise in this case, one of which may be serious.

With even modes it can be shown that the displacement form

equation �! is not symmetrical. This is unlikely to be serious,

however, since the solution depends upon the total strain energy.

Greater concern may arise in that the boundary equilibrium con-

ditions have been stated in absolute physical terms. For example,

for a typical rth beam of the x-set the analysis in Appendix I

requires:
EI 2Bw x ~3 w~

ax = C 2
x c}x

This avoidance of considering the algebraic sign of the terms is

-17-



of no consequence for odd modes, but may be insufficient for

even modes where physical interpretation involves the idea of

negative springs.

Stating the rotational boundary conditions with complete

rigor to overcome this objection complicates the analysis appre-

ciably, and this is being investigated by Adamchak. Meanwhile,

it should be noted that this deficiency can only affect even

modes. Even then, the errors which may be introduced will depend

upon the level of rotational constraint at the ends of stiffen-

ers deforming in these modes. Even modes can only arise in

longitudinal X-stiffeners  for the transverses n = 1 throughout!,

and then only is the grillage is "long" with

m ! 2
c

since this is the lowest even mode. Under these conditions it

has been shown that the effect of end constraint R is very
X

small. The more important side constraints R can introduce no
y

error since n is odd  =1!. Moreover, R constraints will often
X

be small in continuous structures, due to buckling actions in

adjoining "in line" grillages.

Thus it seems unlikely that serious errors would arise even

if the objection is a valid one, and perhaps this is why agree-

ment with more exact computer solutions is good. However, it

would be prudent to treat even mode solutions with caution, or

to avoid the doubt by assuming R = 0 is such cases.

Uniaxial stressin

For the special case when a = 0, equation �3! represents
Y

the solution, and its minimum value is given by substituting

-18-



the nearest integer value of

in equation �3! . Treating m as a variable provides a lower

bound locus to the family of buckling coefficients for o > 1
1

2min ~ GE � � a [ Kl Kl 1! /K2

�6!+ I' K
xy 2yl

in which Kl and K2 are evaluated for a given R with m = alxm 2xm X C

from the equations in the notation, and the Kl l and K2 1 canlyl 2yl

be evaluated for a given R from the notation or from Figure 2 ~
y

As a particular example, consider the grillage for which a = l.

Table l, I' = 0
xy

Table 2, I' = 1
xy

-19-

Then it follows m = n = 1, and the ratios min a /a calcu-xGE op

lated from equation  l6! for a range of R , R and I' = O,l arex' y xy

given in Tables 1 and 2.



R = 6 corresponds to a reasonable value for many ship grillages

[13], and values of zero and infinity correspond to pinned and

clamped conditions. I' = 0 would approximate to a single skin

grillage having open cross-section stiffeners, whereas I' = 1
xy

would be appropriate for an isotropic plate or may be a reason-

able approximation for a cellular structure. The tabled results

illustrate:

the high sensitivity of overall buckling stresses

to the rotational constraints, particularly those

at the ends of the unloaded transverse beams.

practical ship constraints do indeed offer consid-

erable opposition to overall buckling, especially

in single skin grillages having low torsional

stiffness.

constrained

As R = 0, K = K = 1 and equation �3! with n=l becomes
x ' lxm 2xm

2
a

021' K +~K !1 m
2

xGE 2 o 2
a

0

 l7a!

As before, the last term disappears if m/  q+l! is an integer,

since the Y beams then all lie on nodal lines. Rearranging the

terms

� 20-

Similar examples at higher a values would lay even more emphasis
c

on the importance of the constraints at the unloaded edges, and

on their diminished importance at the loaded edges. The reverse

is true for a,   1 and this now leads naturally to the considera-
c

tion of two special cases.

Case 1, o = 0, "long" grillages  a   l! with sides elastically
c



2 0
2

a = v [ � ~K ~  + ! + K 1' [
xGZ op 2 lyl 2 2 2yl xy

c �7b!
=o [/X ~+K I' I

op j 2yl xy

where ~ is plotted against 0[ and m in Figure 3, and can be
c

k � 2
shown to be equivalent to 2

where k is the well-known buck-

ling stress coefficient for a pinned isotropic plate [32] having

side aspect ratio u . H. Smith �3] appears to have been the
c

first to have spotted this useful correlation when applying

orthotropic theory to predict the buckling strength of plywood

panels. Wittrick [2] extended the conclusions to cover all sym-

metrical combinations of clamped and pinned edge supports, and

for biaxial stressing. The curves for clamped ends is also

shown in Figure 3. inspection of equation �7b! shows the mini-

mum value of the critical stress occurs when m = a , as derived
c

before, and the minimum value for "long" grillages  m > l! is:

min a /a = JI< + K ['
xGE op lyl 2yl xy

�8!

The right-hand side is plotted in Figure 4 against side con-

Case 2, o = 0, "wide" grillages  u < 1! with sides elastically

constrained

Again, referring to equation  l3! and substituting R = 0,
y

K = K = 1, n = 1, and making m = 1 by the previous argu-
lyn 2yn

ment, the minimum buckling stress is

1
K

min a = � a    � +c !/K + 2rlxl 2

xGE 2 op 2 o 2x 1 xy
Qo

�9!

For the special but practically important case of a pxo plated

-21-

straint R for a variety of I' , so that the designer may quickly
xy

assess their importance for any particular grillage.



grillage or panel, the buckling stress becomes

2xl 8 EI B K2xe 2xl

where oCE = m EI /bt A Euler column stress for span A and2 2

xe xe

A Db/B EI < 1  see Appendix I! As the panel becomes very2 2

xe

�0!

wide A/B ~ 0 and the buckling stress becomes

K

min a =0   � !lxl

xGZ CE K2
�1!

which agrees almost precisely with the exact solution for an

elastically constrained strut [29] .

Biaxial compression, "Long" grillages  a > 1! with sides

elastxcaLL constrained

Equation �2! simplifies slightly:

A t K2 1

m B t x
xe

�2!

where a G is the  m,l! mode solution for uniaxial compression

as defined in Case l by equation �7a!, etc. It can be shown

that either one or both of m or n is always unity, the  m,l!

mode prevailing when a > l. At lower values the  l,l! mode
c

prevails, except where o > o in which case the  l,n! mode is
X

possible. This is of no practical interest.

To find the critical o stress in the presence of a smaller

o  < 0.3a is suggested!, the value of the wave number for the
x

lowest critical stress is from equation �7!

 y! cl �3!

The nearest integer value should be substituted to find the

lowest buckling stress 0

� 22-



ESTIMATION OF CONSTRAINTS R ,RX

A fuller basis for the analysis is given in Appendix III.

Essentially, it is assumed that in calculating the rotational

constraint provided. by the adjoining structure it will be suffi-

ciently accurate for most purposes to consider only that limited
part of the stiffened structure to which the grillage stiffener
is directly connected in the plane of bending. It further

assumes that the remote ends of this limited structure is con-

strained by a rotational spring CR/El = 6 which is typical for

ship structures. Then, referring to Figure 5, the constraint
which this "first remove" structure exerts on the end o of a

grillage beam is given by
3 I.

C = 3.6 E
i=1 i

�7!

3 I.

Hence R ,R = 3.6 �8!

C 0
~r x
C a

y xGE

�9!

where a is the critical stress for the adjoining structure
xGE

assuming it is simply supported. The Appendix outlines how this
should be calculated, and suggests a simple approximation when

-23�

where K,I refer to the grillage beam being considered, and.

R.,I. refer to a typical adjoining beam stiffener.
1

Some or all of this adjoining structure may itself be liable

to buckle in an overall manner under the forces applied. Then

it is suggested the constraint it exerts on the grillage Y beam

is reduced to C given by
yr



the adjoining structure takes the form of a side wall or deck

extension having the same spacing and frame size as for the Y

beams of the grillage.

Une ual constraints

Where opposite edges of a grillage are unequally restrained

it is possible, by analogy with the isotropic plate buckling

problem, to apply the Lundquist-Stowell approximation �4j . This

involves obtaining two solutions for grillages with equal edge

restraints on opposite edges, using each value in turn and taking

the average of the critical stresses so derived. This and

inelastic effects will be discussed further.

INELASTIC EFFECTS

In view of the restricted value of 0 stresses, it will be
y

assumed that plasticity effects can occur only in the x beams.

By ignoring plasticity effects in twisting  I' is in any case
xy

small for open cross sections of present interest!, it is then

possible to keep the "buckling coefficient" entirely elastic

inside the square bracket terms of the various buckling equations.

This will in any case be slightly conservative, as was also

found by Bleich [15] in discussing inelastic effects in plate

buckling. The elastic buckling stresses a << are proportional
xGK

and so with a final assumption that the stiff-to

ness of the x stiffeners is reduced in the ratio Et/E the general

statement of the buckling stresses becomes:

�0!
xG E xGE

This is clearly less conservative than using the plasticity
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reduction factor E f'E which is very widely used for primary

modes of failure. Vedeler [reference 3, and in discussion at

the Numerical Methods Symposium, Oslo, 1963] seems to favour the

use of E /E, perhaps for its greater simplicity, Schlicher [35]
evidently did also, but it appears his main reason was that his
findings showed the choice made little difference, and so he
opted far the conservative approach. The author is inclined to
think there were too many imponderables clouding the issue of

these early findings, and has confidence in recommending the use
of eguation �0! in the belief that inelastic effects will not.
appear in the transverse beams until after collapse has been

initiated.

It is important to recognise that Et is the "structural

tangent modulus" and should ideally be derived from stub column
type tests on typical elements of the x stiffener-plate combina-
tion arranged so that all the effects of cold rolling and weld-
ing residual stresses are present. In practice this is seldom
possible. Numerous investigations, notably at Lehigh [36,37],
have shown that inelastic effects appear in compression testing

when the average applied stress = v � u , where o is the mate-p r' p

rial proportional limit and a is a significant residual com-
r

pression stress. This a in the case of a welded stiffened
r

panel would be the average longitudinal compression stress in
the middle zone of the plate. The author has discussed this

problem more fully elsewhere for welded ship panels [25], and
has proposed using a structural proportional limit stress in

compression given by

0 = 0 � 0 = p 0
psprro

�1!



Typically, o may be expected to be 0.25a or more in ship struc-
r 0

tures, even after stress shake-out at sea, but it can vary appre-

ciably as it is dependent upon many factors associated with the

welding requirements and site conditions. For many purposes a

value of p = 0 5 is recommended, and is in keeping with Column

Research Council findings [38] . Not only does a lower the pro-
r

portional limit, but it also "rounds off" the structural stress-

strain curve in the yield region, thereby giving rise to early

tangent modulus effects even in metals having a pronounced yield.

To make use of these findings in equation �0!, it is advis-

able to distinguish between

a! flat yield materials

b! strain-hardening materials.

For the former it is convenient to use the Bleich formulation

of the Ostenfeld quadratic parabolae 1153 . These define the

tangent modulus for any given applied stress a in terms of the

yield stress o and the proportional limit. stress. With the
0

author's proposal in equation �1! this relation is:

a  a � a!
0

E t vG l � v !
�2!

where $ = 0 /a the required failure stress ratio for inelastic
xG o

grillage instability. Substituting equation �2! in �0! leads

to the required result

�3!
0

in the range 0 < a /a GE < 1/p . At lower values of a GE col-
o xGE r xGE
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lapse will be elastic. Hence, it is seen that f = a /a is ano xGZ

important parameter to compute, where the elastic buckling stress

a is calculated from the appropriate equation in the report,
xGE

is also a useful parameter when considering structural safety,

and values not more than l/3, for example, would be recommended

for highly stressed designs where there was any doubt about the

overall flatness of the as-built grillage.

The one exception to the use of equation �3! which the

author would advise is for the special case of the pxo grillage

with u < l as discussed in Case 2, equations �0! and �l! ~

Since there are then no Y beams present the direct use of the

E /E plasticity reduction factor is recommended. Proceeding in

exactly the same fashion, it can be shown that in this case

�4!

in the range 0 < 4 < l/P

The use of the above approach based on the Ostenfeld-Bleich

quadratic parabolae could be used for materials exhibiting no

yield plateau, for example, by replacing v by, say, the 0.2 per
0

cent proof-stress, However, if strain hardening were pronounced,

as with aluminum and magnesium alloys, this approach would very

probably be conservative. Use of the Ramberg-Osgood three para-

meter stress-strain relations [39], as given in the Notation, is

then a more rational choice for dealing with inelastic effects.

However, it is then more difficult to incorporate residual stress

effects, making use of equation �7!, since there is strictly

no proportional Limit. An approximation which is sometimes used

for a when using these equations is to take 0 000l offset.
p
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Quite apart from any numerical difficulties which could arise,

there may be some objection to using this approach in the same

way when accounting for residual stress action in strain harden-

ing materials. This method is as far as the author is aware

untried, and may be no better than, say, adopting a reduction

in base stress a  perhaps pro rata with a ! and n.
0 r

EFFECTIVE PLATING

In computing stiffener-plate properties, it is necessary

to assess how much plating acts with the stiffener in flexure

and in compression There is an almost total lack of uniformity

in this subject, as shown by a recent review [40!. For single

skin ship grillages of conventional stiffener/plate area ratios

the choice is often not too important, though for cellular struc-

ture and for least-weight structures the choice becomes very

important. Some guidance based on simplifications from refer-

ence [25] is given below for those who may not be bound by codes,

or who perhaps have not made their personal preferences.

a! When N acts alone b = b/6; a = a/2.x e ' e

b! When N and N act take b as above; a is a wide
X Y e e em

plate strength equation.

a = a /a = 0.9/8 + l.9  l - 0.9/5 !/aB.
2 2

c! For grillage bending stresses under pressure

b /b = a /a = 1/2 unless the plate compression
e e

stresses are greater than plate buckling stress,

in which case use least value of above or

b /b = �8 � 1!/9 and a
2

em em

The advice for b when N acts is based on plate stiffness
e X
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using the reduced effective width concept b' and allowing for
e

residual stress action [25!. An approximate expression is

b
~ R

1

where o is the "edge stress" in the effective plate and X stif-
e

feners at failure, and R < 1 is a somewhat complex residual
r-

stress reduction factor depending on Et  which itself strictly

depends on 0 ! and plate compression residual stress a . To
e r

avoid. an iterative solution for o , we note that the radical ine'

the above equation is > 1, and so we may approximately assume

the last two terms cancel. Thus the reduced effective width

b/5. A similar approximation for conventional effective width

 stress dis tribution! is �B � 1! /8
2

For the special case of "panel" collapse where m = A/a, or

for pxo grillages, residual stress actions often assume greater

importance. This is because there are no stabilising Y beams

and the strength and stiffness of the plating associated with

the X stiffeners therefore becomes more important. In this case

an iterative solution is advised and it is suggested that refer-

ence [25] be consulted, especially for welded panels. It should

also be consulted for slender cross sections or where low weight

is sought.

EFFECT OF PRESSURE

Under combined pressure and in-plane loads the overall and

local bending stresses should be magnified  or attenuated, if

tensile! by factors m and m < respectively, where the terms
xo xk

are defined in the Notation. The use of magnification factors

for ship deck and bottom calculation has been substantiated by
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SHIP DECK EXAMPLE

Consider the upper deck of a 505-foot guided missile destroy-

er with the following particulars:

228 in., 192 in.

9 x 4

18,000, 18,000 ton in.

0.494 in.

24,000 ton in./radian

A,B

pxq

EI /b, EI /axe ' ye

xe

C

c,rx' xy

min a steel
0

20 ton/in.
2

Hence, the derived parameters are

R = C B/EI
y y ye

5.6

A ye 1/4
I b

o B I a
xe

1.188

2m E
2

a op B2
xe

19.52 ton/in.
2

-30-

Smith [5] .

These magnification factors would also allow the effect of

as-built lack-of-flatness to be examined, providing these distor-

tions were analysed into harmonics  m,n! and then magnified

by using the appropriate o GE. If measured distortions were
xGE

found to give rise to high bending stresses, then it would be

possible to lay down a lack-of-flatness standard for construction,

for example, based on the avoidance of yield at the extreme

design loads

If computer solutions to grillage bending analysis are not

available, then Clarkson's book will be found most useful [45] .



It is required to examine the uniaxial grillage buckling strength.

Assume first the stresses are elastic, and that n=1. Equation �7!

with I' = 0 becomes
xy

2 Q
2

a. =m [ � +k � ]1 m 0

ml 2 op 2 1 2
G m

0

where K = 2.5 from Figure 2 for R = 5.6.
1

a = 9.76 [0.709 + 2.5 x 1.411]

2
41 . 3 ton/in .

a21 = 9.76 [2.836 + 2.5 x 0.353]
2

36.8 ton/in.

The third mode is greater, and so a21 is the lowest. The more

exact computer solution [5] provides cr21 = 38.1 ton/in The2

agreement is very good.

For comparison the hinged solution was evaluated to be

20.7 ton/in. �1.0 ton/in. by reference [5]! . Therefore, the2 2

side constraints, even with a modest value R = 5.6, nearly

double the elastic buckling stresses

inelastic effects can be examined using equation �9!.

Assume as in reference [6] that the mean yield is 1.645 standard

deviations higher than the "minimum." The mean yield assuming

c.o.v. = 6% is 22.2 ton/in. Assume p = 0.5 to allow for resid-2
r

ual welding stress effects, then

XG 0 4 0 XGE
1

22.2/[1 + 4�2.2/36.8!]
2

19 ' 3 ton/in.

Hence, this may be considered to be a reasonable estimate on

which to base the grillage collapse load for the deck. A fuller

discussion of statistical aspects 'appears in references [6,46] .
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CONCLUSIONS

Discrete beam explicit equations have been derived for

buckling stresses for biaxially compressed orthogonally stif-

fened-plate grillages having opposite boundaries equally elasti-

cally constrained against rotation. By using the Lundquist-

Stowell plate buckling approximation, the solution for the

completely general case where opposite edges are unequally

restrained can be obtained by a double calculation. A listing

of the equations appears at the end of these conclusions.

Other novel features of the solution include:

a more realistic treatment than hitherto of bending-

torsion twisting of the stiffeners about their plate

connection, with provision made for open or closed

cross-section stiffeners having intact or perforated

walls;

~ allowance for inelastic effects in flat yield materi-

als, and a suggested treatment for strain hardening

materials;

a quick method for estimating the initial unloaded

value of the constraints R at stiffener ends, and for

estimating their reduction under load as caused by

coupled buckling actions in adjoining structure;

in computing stiffener-plate properties reference

was made to a parallel study of effective widths for

stiffened plates which include the degrading effects

from welding stresses [25] . This sophistication is

recommended for slender cross sections or where low

� 32-



weight is sought requiring low safety;

shear deflections can be approximately allowed for,

but it is pointed out they only become important when

flexural buckling is unlikely;

the theory was extended to include the effect of

lateral pressure from the point of view of estimating

total stresses in the structure. This makes use of

magnification concepts using the elastic buckling

stresses, and thereby allows the effect of as-built

lack-of-flatness to be included.

Numerous accuracy checks were made where possible and, in spite

of the several approximations involved, accuracy was everywhere

well within the 10-lS per cent required for most design purposes.

For simplicity in estimating mode number m, it was assumed

o /0 < 0.3, which is believed to cover all likely ship appli-
y x-

cations. Where required, this restriction can be removed by

working from the general buckling stress relationship in equa-

tions �2,13! .

Some general conclusions which arise from the results of

the theory are:

1} The parameter m = e [Kl 1/Kl lj which is termed1/4
c 0 lyl lxl

the "constrained" orthotropic plate aspect ratio is important

in the same way as the orthotropic ratio m = A/a[I b/I aj
1/4

0 ye Ke

or the isotropic plate aspect ratio a = a/b. Zt divides gril-

lages into two broad types

"long" when u, > 1

"wide" when u < 1
c
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Many Longitudinally framed ship grillages familiar to the author

fall in the long range l < a < 3, whilst transversely framed
c

ship grillages are mostly wide.

Far long qrillages the lowest biaxial buckling stresses

occur with m half waves in the longitudinal direction and n=l

half wave transversely. For wide grillages the lowest buckling

stresses may arise in, the  L,n! mode if o dominates; in ship
Y

grillages generally a «a and then only the  l,l! mode is
y x

of interest.

In long grillages the effect of side constraints R at the

ends of the transverses is marked. In wide grillages the end

constraints R for the longitudinals assume greater importance .
X

For "square" grillages  a = l! both constraints are important,

and clamping the edges can increase the buckling stresses for

a. torsionally weak grillage by about 4:l.

2! For long grillages the lowest uniaxial buckling stress

occurs with m = a . Providing o is small  < 0.3o suggested!,
c Y X

the lowest mode occurs with m  ! = a The side
 y! c x

constraints shorten the buckled wave lengths in long grillages,

whereas the presence of a transverse load lengthens them. This

is analogous to long isotropic plate behaviour.

3! Under uniaxial conditions it was demonstrated that for

Long grillages with constrained sides but pinned ends  Case l!

buckling stresses can quickly be determined using readily avail-

able isotropic plate buckling coefficients for a given aspect

ratio a = m, as in Figure 3. Wittrick also showed a similar

relation existed for biaxial buckling, and so it. would appear

feasible to provide further design data by extending the



presentation of buckling coefficients for any R ,R constraintsx

under uniaxial or biaxial compression.

4! As mentioned, constraints can appreciably raise elas-

tic buckling stresses, particularly for single-skin grillages

of low torsional rigidity. For long grillages the side con-

straints are most important, and there is now no doubt that they

have prevented overall buckling of RN frigate decks at. sea.

Typical deck grillages have R = 6 or more, and these sort of
y

values nearly double the buckling stresses. Practical con-

straints are closer to "clamped" than to "pinned" conditions.

5! It follows that any design methods which assume the

edges to be pinned, will be considerably and unnecessarily pessi-
mistic. It may be argued by analogy with isotropic plate beha-

vious [see, for example, reference 25] that the side constraints
would diminish as load increases due to inelastic effects, and.

therefore pinned assumptions are justified. This analogy is

incorrect, since the discrete nature of the transverse stiffeners

ensures that they are not severely stressed until collapse

deformations build up. The same is not necessarily true, of

course, for the end constraints, but these only assume practi-

cal importance in the less usual wide grillages.

Unidirectional grillages are really outside the scope of the

paper, although advice regarding their treatment has been
offered. Reference [41] is probably the best compilation of

plate and stiffened-plate buckling data readily available to
naval architects, and should be consulted for cases outside

the scope of this report.
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E uation listin

For convenience a summary of equation numbers for elastic

buckling stresses is=

�2,13! general biaxial solution

�3! general uniaxial solution

�7,18! uniaxial solution with R = 0, a > l
x c

�9! uniaxial solution with R = 0, a, < 1
Y c

�0,2l! uniaxial solution for pxo grillage

�2,17a! biaxial solution with R = 0, a > 1y ' c-

Inelastic effects are allowed for using:

�3! all pxq grillages

�~! pxo gri1 lages equations �0, 21!

Elastic constraints are evaluated from:

�7,28! stable adjoining structure

�9! ins table ad joining structure

RECOMMENDATIONS

1} Enough confidence has been established in the theory

to recommend its use in design.

2! However, since overall collapse would be catastrophic,

and is suspected of being sensitive to shape imperfections

 whose effects can be examined using the theory presented!, it

is felt most desirable to obtain some experimental confirmation.

3! The theory can be used in many systematic studies.

Three examples recommended are:

parametric studies to establish or disprove the

belief that the possibility of general instability

in highly stressed designs can be sufficiently
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removed with only minor weight penalty in the frames.

gross panel synthesis studies at various structural

loading indices. These should include the effect

of lateral pressure.

parametric studies to establish important variables

and to show their effect on weight or cost  if

possible! .

ideally, the theory should be incorporated, along with predic-

tions for other modes of failure, in a synthesis routine for,

say, amidship section design of longitudinally framed ship.

4! For design purposes, it is necessary to consider

safety. Where it is known that scantling cross-section areas

are within a variance of, say, 3-4 per cent, and where yield or

proof stress variances are typically 6-8 per cent, it is

suggested that, under extreme loads based on currently available

ship bending data, a deterministic safety factor using inelastic

results should be no less than two. An alternative criterion

akin to that used to prevent general instability in submarine

hulls is to make o jcr > 3. Further advice should await
xGE o

experimental model test results, along with more reliable sea

load data, and in due course safety should be considered

statistically t6].

5! For this purpose, it is necessary to collect frequency

distribution data on variations in:

plate thickness and stiffener cross section

material properties, notably o ,o , E, E
0 p

residual stress effects, notably a and as-built

overall and panel distortions.
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This should be pursued actively now.

6! If for some reason overall instability appears as the

active constraint, for example, in deck design, even with the

present theory which allows the strengthening effects at the

boundaries to be considered, the designer should bear in mind

that minor structure, such as partition bulkheads under the

deck, can often provide enough support to justify a reduction

in the unsupported spans A, B. This may remove the problem, but

it is necessary to check that this support does not occur along

or close to instability nodal lines where it can do no good.

In particular, avoid transverse support at A/m positions, where

m is for lowest buckling load. Longitudinal support is generally

more effective.

7! If measured. grillage or panel lack-of-flatnesses were

found on analysis to give rise to high bending stresses, then

it would be possible to lay down lack-of-flatness standards for

construction, for example, based on the avoidance of yield at

the extreme design load. This would be exactly analogous to

submarine hull circularity specifications.

8! Design data for buckling coefficient < could be use-

fully extended as discussed in paragraph 3 of Conclusions and

in Appendix I, using isotropic plate correlations.
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APPENDIX I

THEORY OUTLINE

General case

w = w S S � + Gl S ! � + G2 S !mn xy 1 x 2

For a typical rth X beam the equilibrium conditions to be

satisfied at x = 0, A are:

EI 2Bw x � w!
ax C a2x 3x

Likewise G2 = R /2xn, and so the
y

which leads to Gl R /2xm.
X

buckled form is

R R

w = w S S � + S ! � + ~ S !mI1 X y 2%m x 27In
�!

The internal strain energy V stored in the structure in the

buckled form is considered to be

V vertical bending of x and y stiffeners
By

V, = V +
B Bx

V = V + V rotation of the elastic springs
s sx sy

VT = V + V torsion
T Tx Ty

Refer to Fig. 1, and to the Notation where a convenient

shorthand notation is outlined for the trigonometric functions.

Zn addition, the subscript "e" for effective stiffener-plate

properties will not be used but is implied. The assumptions

are given in the text and the most general buckled deformation

assumed is:



V< = V< + V< longitudinal warpingI'x I'y

VBZ = V + V sideways bending
BZ BZx BZy

A typical approach is to consider flexure of a typical rth
beam of the x set, which will involve integration along the

length, and then sum all p beams of the x set. Since the

assumed buckled form in its most general case is symmetrical

the results for the y set can then be written down directly

by inspection. The process is illustrated as follows. Consider

vertical bending of a typical r beam of the x set.

V = � EI  8 w/3x ! dx
1 2 2 2

Br 2 x
0

see footnote"

1 2 2 4
A

� EI S � + R S /2mn!  mar/A!
2 x r y r mn

0

 -S + R C /mm! dx
2

x x 2x

A 8R R
2

where 2 [1 + 2 j- 2 2 23x . 2 m7I x

0 3'll m 7I' m

 K + 13 R /16m m !

Summing for all p beams in the x set.

5IUse of dx where M = pw + E normal force moments, would
2EI

in theory -,ive greater accuracy, since w is represented more

� 40-

2 ~ 2accurately by the assumed curve than is 3 w/3x . However, in

the case of a grillage the ensuing algebra is much more complex.



V =  vf ZI, m w /4A ! K + l3 R ~16m m !4 4 2 3 2 2
P.x mn xm X

S  l+ R S /2mn!
r=l

y r

It is convenient to trans form the summation into trivial

integral orms. An intuitively correct transform is

p B
c~ nor ~ p + 1 . cranny~<

p + l B 0

�!

wnere n and c nave positive integer values. The conditions

under which this identity is satisfied are examined in

Appendix II, where it is found to be applicable to tne

present problem with one proviso, which will be discussed
later. The relevant summations are also quoted there, which

leads to

p
B

S � + R S /2mn! dya+1 2 2

r=l
y

0

[1 +  SR /3x n ! sin nm/2 + 3R /16' np+1 2 2 . 2 2 2 2
2 V

 p+1! K /2

V = vr EI AB  m w /A 8b! [K + 13R /16' m ]K �!4 4 2 4 2 2 2
Bx X mn xm x yn

Hence, the total bending strain energy for the x set of beams is



The K terms depend upon the rotational constraints R ,R andX

are de ined in the notation. By symmetry tne equation for

the y set is obtained by replacing x,m,A,B,b with y,n,B,A,a

respectively. Henceforth, only the basic equations and

solutions will be quoted . r the strain energy and work

equations. For spring energy

p

r=l y=rb,x=o

EI AB m w /A Sb! [4R /% m !K
4 4 2 4 2 2

X mn x yn
�!

as expected this is of the same form as equation �! for the

bending strain energy of the x beams. The difference lies

only in the last bracket terms. Inserting a typical value

R = 2m for the dimensionless spring stiffness  see Appendix

III! these bracket terms are 3.70 and 2.55 for equation �!

and �! respectively, and so it can be seen that the spring

strain energy is a sizeable proportion of the beam bending

energ". Furthermore, in many ships, and certainly in warship

decks, the Y beam bending energy is appreciably larger than

any other component of total strain energy; and so it follows

that the sprin- energy absorbed in the structure surrounding

the -'nloaded ed=es cannot be ignored.

Adding �! and �!, and then Y-beam equivalents
I Ix y 2 lxm 4 2m K

w [ + n aa b mn 2 ' o lyn xm yn
a

w4

V + V
B s SAB

�!

and we now start to recognise a similar form to the orthotropic

plate bending terms.
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': or torsion

D

V = ! � CJ { B w/clxBy!, dx1 2 2

Tx
r=l

2 X y=rb

~~C - XaJ

8AB b

2
mn xm yn 2xm 2yn w mn! K K K K  8!

A

� aZ  B vyBX ! , dx
1 2 � 2 2

8ZX 2 xZ
r=l

v=rb

0

where v = Z  Bw/By!X y=rb

sience, it follows
A

XBZ�+ V< = $ 2 Z: Z Z + rx! B w,ax By! dx1 � 2 3, 2 2
r=l o

6
2

m E  I Z + I' !{w m n  'A 3 Sb! K K K Y.22 4 2 3
XZ x mn xm yn 2xm '2 yn

 9!

Adding  8! ar d  9! together:~ith. the corresponding Y beam

components, and. rearranging we obtain

vr E 2 2 2U+V+V=~w[21'mn]K K K KT Bz I' 8AB a b mn xy xm .,n 2xm 2yn

{10!

can be shown [13] that when there is an enforced axis of

rotation the longitudinal warping constant I' can be con=-';er d

together with sideways bending.



The approximation sign arises from ignoring 2/K  a+1! and

2/K  p+1! in the twisting terms as being small compared with
yn

K and K respectively. Also 3R /4m m K and 3R /4m n K
2 2 2 2 2 2

2x 2y X XITL y yn

have been ignored in the sideways bending and longitudinal

warping terms. There are negligible approximations in the

vertical bending terms which dominate the potential energy

in grillages with open section stiffeners. In taking

advantage of this grouping of terms that vary in exactly

the same way with elastic constraints R ,R  same aroupingX

of the K's! it should be recognised that the tripping-torsion

consta- I' contains tripping rigidities J t and J t whichXy xt yt.

contain the mode integers m and n. For example

J = J + z m E I Z + I' !/GAxt x " xz x x

It would be convenient to consider the dimensionless twisting

rigidity I' as a constant independent of wave lenath, and
Xy

so numerical studies were made with open and closed section

stiffeners on typical grillages. These showed that the last

term in J t had only a very small effect. on the value of m
xt

for the lowest buckling load. As m has to take the nearest

integer value to that derived algebraically  by the usual

process of minimising! it therefore follows that a small error

There is however one odd condition to take note of when the
Y beams lie on nodal lines, and this is discussed in Appendix
II and. in the main body of the report. If - becomes very
small, errors will occur in the vertical bending terms of the
x set, and for p < 3 re . [1] should be consulted when K = 0.

Y



in the choice of m for evaluating J will almost certainly

not affect the final value of m for the lowest buckling loac..

ignore-v r, experience indicates a lack of sensitivity o

buckling load t '..=.. = number in the narrow region of hange

from one value of m to another, so an incorrect choice

therefore is not important in sucn cases. The solution '~as

there ore allowed to proceed assuming I' independent of m.
xy

The algebraic expression so derived for the value of m fcr

the lowest critical load is then used for computing J and

hence I' . The procedure then becomes at worst a first
xy

iteration, which may upset the purist, but is justified in

the authors view by its convenience to designers with

negligible loss in accuracy. The same argument would of

course arise for in the general case when there are n
yt

half '.b'av s across the grillage. However, we may antici;ate

our main interest when n=l and so no problem arises.

Neglecting the elastic compression of the beams, the

external works done in compression over the whole effective

cross-sections are, with the usual small deflection approxi-

mation, given by:

p A 2
Wx=!abtxe2wx ~ =bd

r=l o

8 2W = ! a at �   Bw/By! dy
yyye2

s=l o
x=sa



Adding

 m /8AB![G m B t K2 + 0 n A t K2 jK K2 2, 2 2 2 2
.'.n x xe 2xm y ye 2yn xm yn

By Rayleigh's principle [27] the practical test for stability
is that for all possible deformations V > W. It follows

therefore that equating these two energies will provide an

upper bound to the critical loads; or exact solutions in the
unlikely event of the assumed buckled form being exact.

Equating �1! with the sum of �! and �0! leads to the
relationship for the critical stresses

nA t K2n a2 2

~ ~
xGE  y!

�2!

where

a = � 0 [K m/a + 2n I" K K + K n a/m j/K1 . 2/ 2 2 4 2 2

xGE 2 op lxm o xy 2xm 2yn lyn o 2xm
�3!

At first sight the terms may appear to have lost their

symmetry, but this is not so. The arrangement focuses
attention on a rather than o , and equation �3! in fact is

X y

the general buckling stress a G when a = 0. The use ofxGE ' y

subscript  y! in o <E  is simply to denote the critical value
of a in the presence of a , and we know that in most if not

X

all ship cases 0 will be small compared with a . Mote, they X
Kl and. K2 terms  m=n=l! are plotted against rotational con-
straint R in Fig. 2.



the mathematical proof is complex. However, the truth of the

statement can be demonstrated more easily for the cases of

practical interest where either a or a predominate over the
x

other. In ship structures generally c » cr , and so theX

square bracket term in eq. �3! is the one of interest. It

will be noted that n is everywhere in the numerator except

for certain terms in K2 . However, the effect of the K2
2yn

terms is very weak compared with the Kj terms. This follows

from their limited range f rom l pinned! to l. 33  clamped!, as

compared with 1 to 5.33 for Kl. Thus the product n K2 in2

2yn

the middle term will be dominated by the n in the numerator2

terms ~ Hence, it follows by inspection that in this case of

small a n will always be unity.

Noting also that K2 is near unity and. hardly sensitive
2xm

to m it follows that at least as a very good first approxima-

tion to finding the critical value of m when o = 0, we only

require to minimize

2 Q
2

m o

2 lxm 2 ly 1
OL m

0

�4!
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Minimizing eq.  L2, 13! with regard to m and n for any given

combination of o, a would provide two eighth order equations
x' y

in m and n to solve for finding the lowest critical loads.

However, it seems reasonable to suppose from the isotropic

plate buckling analogy, that perhaps either one of m or n

is always unity, or both are = 1. This is indeed so, though.



We can examine the nature of Kl by rearranging it using the

unmoded coefficients Kl 1 and K 1 which are independent of m,
lxl xl

that is  see notation!:

+  Kl j 1! K ]/  m + Kx] 1!2

1 1 1 m-1!/ K 1+m � 1!2 2
lxl xl xl

or

we see that

a! at low values of constraint R Kl 1 reduces tox' jx1

unity and so Kl tends to unity, irrespective of
m; at higher values of R ,K 1 dominates since itx~ xl

tends to infinity as R does, and so K tendsx 1XIH

to K j 1 irrespective of m

b! Noreover, the m terms in Kl are in the2

For convenience, we shall defi~e this as the constrained

orthotropic plate ratio a , and its significance is that for
c

values o f u ! 1 we may expect buckling in the  m, 1! mode.
c

denominator and will tend to be weak in relation

to the m obtained by cross-multiplying'4

This rather suggests that a very good approximation to the

critical value of m is given by treating Kl as independentlxm

of m, i.e. = Kl l. Inserting this in eq. �4! and differentia-
lxl

ting in the usual way, we obtain



For a < 1 we may expect the �,1! mode, except where cr > oc y x.

in which case the  l,n! mode is possible. This will not be

considered since it is of no practical interest.

In using eq. �5! the nearest integer value  increased

preferred! should be used. It can be substituted directly in

eq. �3! to evaluate the lowest value of critical stress 0xGE

and as a check values either side can be investigated to

make sure the lowest value has indeed been found. This would

also guard against any approximations involved in eq. �5!.

Providing e > 1 substituting m from eq. �5! directly into

eq. �3! provides a lower bound tangent to the family of

buckling coefficients in exactly the same way as for isotropic

plates. This yields for a > 1
1
2

min o = a [ K K !,/K + I' KxGE op lxm ly 1 ' 2xm xy 2yl
�6!

though as just described a more exact solution is obtained by

substituting the nearest integer value of eq. �5! in eq. �3! ~

To find from eq. �2,13! the critical stress under

biaxial conditions with o present, it can be shown by

analogy with isotropic plate results for biaxial buckling

[1,42] that providing a /a is small  < 0.3 is suggested!
x

the value of wave number for the lowest buckling stress is

given approximately by

 y! c

The nearest integer value should be substituted in eq. �2,13!

to find the lowest v GE 



Accura checks

Two special cases 1, 2 when 0 = 0 have been discussed

in the main body of the report. They are not only important

practicalLy, but they also provide certain checks on the

accuracy of the theory as follows:

Case 1, R = 0, a

a! When R = 0, a GE = a  I + I' !, which is the well
y ' xGE op xy

known result for a pinned orthotropic plate. Putting I' = 1<
xy

EI /b = EI /a = D, and t = t, we obtain the well known result
X X

for long pinned isotropic plates apE 4' D/tB2 2

b! Nhen R g 0, but I' = 1, ZI /b = EI /a = D, andY xy ' x y

t = t we obtain for the isotropic APE = 2' D  K + K2 1!/tB2 2

x PZ lyl 2yl

where K 1 and K 1 are given by the equations in the notation,
lyl 2yl

but where R is now given by CB/D where C is the moment/slope
y

elastic constraint per unit length of the unloaded edge

a'PE has been evaluated for the complete range of R from
y

0-~ and found. to agree within 5 per cent with the theory given

in references [15] and [31] being always slightly greater

as expected using Rayleigh's theory. This check is considered

to be most searching, and suggests that the assumed buckling

form is a good one. In the particular case of R ~~, that is

unloaded edges clamped, we obtain o , = 6.74 vr D/t8 which2 2

agrees within about 3 per cent with the well known buckling

coefficient 6.97 for long plates with all edges clamped.

-50�



c! When I' = 0, we obtain for the orthotropic plate
Xy

having zero torsional rigidity, and having flexural rigidities

EI /b and EI /a, 0 G< � � Kl 1 a . This tends to 2.31 a asX y ' XGE lyl op' op

g ~ which agrees well with the known result %5a = 2. 24 a
op op

for a long orthotropic plate when all edges are clamped.

d! Putting m = q + 1 and ignoring I' we obtain the
xy

Euler column buckling stress for buckling of the X beams

between the Y beams.

Extension of correlations

In the main body of the report a reference is made in

Case 1 to Smith-Wittrick correlations between orthotropic

plate and isotropic plate buckling coefficients using a = e.0

When R = 0 nc difficulty arises since a then = s 4/K andX c o lyl

is not a function of wave length.

With R = 0 the constrained orthotropic plate aspect
1/4

ratio should strictly be u = m IK] 1/Kl j for correlationc o ly1 lxm

purposes and therefore depends upon m since Kl contains m.

Hence a trial and error procedure must be used to determine

Then the intermediate curves could be drawn in Fig. 3

between R = 0 and R = ~  this latter clamped case is again
X X

independent of m since Kl = 5.33 for all m! . The data could
lxm

then be plotted against a = o, [Kl 1/Kl j ] to provide easilyc o ly1 lxl

used design data.
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Case 2, R = 0, a < 1
c

a! For the isotropic plate substitute a = 2m D/tB
2 2

op

a = A/B and I' = 1 to give
xy

OPE  TI D/tB ![K 1 B /K2 1 A + 2 + A /K2 1 B ]2 2 2 2 2 2

and this has been found to give reasonable agreement with an

isotropic plate analysis [15]. In the particular case when

A/B ~ 0, apE  Kl j/K2 1!x D/tA which agrees within 2 per2 2

lxl 2xl

cent with the exact. solution for an elastically constrained.

wide plate or strut [29]. As a ~ ~, K /K2 1 ~ 4, whichlxl 2xl

leads to v = 4m. D/t A the correct. solution for a clamped2 2 2

PE

wide plate.

b! For the special but practically important case of

a pxo plated grillage we may take EI /a = D and GJ /2a = D
y ty

the flexural and twisting rigidities for an isotropic plate

and obtain

K 2 GJ 2lxl A Db   xt 2 A 	

xe 2xl

�0!

when the ends are simply supported Kl l K l l and the
lxl 2xl

expression reduces to one given in reference [30] except

ratio or A/B ~ 0 the expression degenerates for a "wide" pxo

grillage to a  Kl 1/K2 1! which agrees within 2 per cent
lxl 2xl

with the exact solution for an elastically constrained

strut [29] .
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that the torsional rigidity GJ t of the stiffeners is ignored.
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Equation �0! should only be used for A Db/B EI < l. As this2 2



In addition to these checks, calculations were also carried

out for certain ship decks and checked against a more exact

computer solution [5] and agreement was everywhere within lO per

cent. The explicit relations which have been derived are there-

fore felt to be sufficiently reliable for most design purposes.



APPENDIX I I

VALIDITY OF IDENTITY

following identity holds true

P
B

c~ nor > p + 1 . c Inlay~<

where c is the positive integers l,2,3 and 4

Summations

P
C nmLet S = ! sin r8 where 6

c p+1

Sl ! sinre, Cl ! cosr9
 p+1! i9

ir8 e

i 8 nivr
e � e

ie
i � e

-l n even

1 + e
ie

2= -l+ �.

l � e
i8 l � e

ie
n odd

Hence S = 0
1

n even

2sin8

 l � cos8! + sin 8
2 - 2

It is required to examine under what conditions the



cot 0/2 = cot nm/2  p+1! n odd

2  p+1! /nor for large p

p

S = p/2 � 1/2 ! cos 2r8
2 r=l

But C = -1 n even = 0 n odd
1

I

since 2n is even S2 =  l/2} p+1! all n.

p P
S = 3/4 $ sinr8 � 1/4 ! sin3rO

3 r=l r=l

n even

4  p+l! /3nm for large p

Now sin 8 =  cos49 - 4cos28 + 3!/84

P P

S4 =   $ cos4r8 � 4 ! cos2r8 + 3p! /8
r=l r=l

 -1 + 4 + 3p!/8

3  p+1! /8 all n

Integrals

These are standard and the results are quoted.
8

Let I = sin  nay/B! dy
c

0

I = 2B/nx n odd,

1 �B/nm! sin  nor/2!
n even

all n.
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I = B/2
2

all n

I = 4B/3nm n odd,
3

2�B/3nm! sin  nm/2!

0 n even

all n

all nI = 3B/8
4

-S6-

For cosine functions the corresponding integrals for all n

are Il = 0, I2 = B/2, I3 = 0, I4 = 3B/8.

Summarizing the comparisons the identity is exactly true

unless c and n are both odd  or unless n/ p+1! is integer in

which case the summation is zero, and this case is discussed

later in this appendix!. It is approximately true in the

latter case if cn/p + l is small. Applying these findings to

the theory outlined in appendix I, it is found that although

n is usually odd  unity!, c is usually even � or 4!, and so

the identity is then exact. Fortunately where c is also odd

 e.g. = 3 for one of the three terms in the strain energy of

bending of the X beams in Case l!, it will be found that p

refers to the number of longitudinal stiffeners, and in most

ship grillages p + l is usually large compared with c =3!.

So the identity is then nearly true leading to a small

acceptable error in that particular term. As it is one of

many terms the overall error may be assumed to be negligible.

For p < 3 reference [lj should be consulted when R = 0.

If n/ p+l! is an integer the left hand side of the identity

is alvays zero. The right hand side vill only be zero if c is

odd and n even and so the identity is not then generally true



In the present analysis this situation only arises in the

bending of the Y beams and their end springs when c=2 and

these beams form node lines for the buckled deformation, viz.

mgq + 1! is an integer. In this case V and V are both
By Sy

zero, and so therefore is the last term in equations �3,17!

for the buckling stresses. This term should then be omitted,

and the lowest buckling stress may then be given by putting

m = q + 1 in the first terms.

For the twisting of the Y beams the summations involve

cosine functions. We can make use of previous results by2

expanding as follows:

q2 mTfs ! � ~ 2 m'1Ts !
s=l q+ 1 q+ 1s=l

+ 1
q 2 in general

or = q when
m

q + 1
is integer,

in which case the sin summation is zero. Thus2

q

cos ~ � �  q + 1! q, where q is a modifying factor
s=l q +

applied to the twisting rigidity of the Y stif feners which

becomes important for small values of q, the number o f Y

beams. Cos terms also occur in the twisting of the X beams,2

but, in most ship cases no p modification is necessary. This

is partly because p is large and hence p =  p � 1!/ p + 1!
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tends to unity, and also because in this case it only occurs

in one rather minor term of three. Assuming p = 1 therefore

incurs negligible error, and is certainly convenient.



APPENDIX III

ESTIMATION OF CONSTRAINTS

General remarks

The dimensionless rotational constraints R and R at thex y

ends of the X and Y beams are defined as

R = CR/EI

where K and EI refer to the beam considered and C = moment/slope,

elastic stiffness provided by the adjoining structure and the

connections thereto. It has been shown [43] that well designed
welded stiffener connections suffer negligible body strains and
faithfully transmit rotation, at least until the members

connected suffer permanent damage. They may therefore

conveniently be assumed to be "rigid" ~ For orthogonal

structures C will then depend upon the

 a! flexural stiffnesses of connected beams in the

plane of bending

 b! torsional stiffnesses of connected beams perpendi-

cular to the plane of bending

 c! "sway" at stiffener connections in the plane

of bending

 d! moment/slope conditions at remote boundaries

of the adjoining structure.

Torsional rigidities for open section stiffeners are very much
smaller than flexural rigidities  l/500 is a typical ratio in
Naval ships!, and so  b! can be then ignored. Torsion effects



may become significant where heavy closed sections occur near

the beam ends, and their contribution to C can be estimated

quite quickly using the St. Venant theory. Ignoring torsion

is of course conservative in the present context and so the

analysis proceeds on this assumption. In orthogonal

inter-connected plated structures, such as those found in

ships "sway" can be ignored, due to the high in-plane rigidity

af plating and egg-box type construction. Lastly, assumptions

made at the outer boundaries can be shown to have only a

very minor effect on the constraints at the grillage being

considered, even if these boundaries are only one or two

structural elements away from the grillage.

It is reasonable therefore to concentrate on  a! and a

method of evaluating R , R has been developed by the authorx' y

I13j which is in a sense the antithesis of moment distribu-

tion in that it works invwards from the outer boundaries to

the edge of the grillage. The solution is explicit and by

making the assumption that we can idealise the boundary of the

adjoining structure to one or at most two joints away from

the grillage, the boundary constraints are quickly determined..

Elastic small deflection beam theory is assumed throughout.

Stiffness of a single beam

Refer to figure 5 which shows the most general orthogonally

connected adjoining structure joined to and lying in the plane

of a typical grillage beam. Consider first of all a typical



"second remove" beam j i having an elastic rotational spring

C. connected to end j. If end i is acted upon moment, M. this3 i
will cause a rotation 0. in the same sense whose value can

1.

readily be shown to be given by

EI,

~ = 4'. ~q
i

where k. + 3

k. +4

C ~.
k. = ~3

j . - EI.
j

�4!

When C. = o end j is pinned and we obtain M./e. = 3EI./R.; whenj i i j j'
C. = ~ end j is clamped and the coefficient is 4. Both results

j
are well known. Thus even in a single beam a wide variation

in constraint at one end causes only a small difference in

the rotation at the other. It follows that this influence

will be appreciably further reduced at the ends of any beams

joined to i.

Multi-connected beams

If we consider now a typical "first remove" beam io, then

the rigid joint assumption implies that all members meeting at
end i share the same rotation 8,. It therefore follows from

3.

statics that the total moment exerted by beams il, ij and i3

at. the end i of beam io, is

3 EI .
e.
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Therefore, the rotational spring exerted by the structure

connected to end i of beam io has a stiffness C. = N./8. 3.

given by

El .

Ci=4 �5!

Extending this process to all the beams connected to end o

of the gri llage, it therefore follows that the rotational

spring provided by all adjoining structure at end o of the

grillage beam is given by

EI.

C = 4 $ K.
o . i

3=l

where

k. +3
i

i k. + 4
1

C.R.
L

k.
i EI.

3.

and C. is given by the summation �5! for the second remove

members'

Approximation

Analysis of many ship structures has shown that K,, which
3

has a range of 3/4 when pinned to l when clamped, is typicall'

about 0.9  k, = 6!. By assuming this value at second remove
3

joints  or 0.75 or l where conditions are known to be pinned

or clamped precisely! negligible error will arise in calculating



the rotational sti fness C . Indeed, calculations for even
0

moderately redundant frameworks show that high accuracy  well

within 5 per cent! can be obtained even if the first remove

joints are taken as the boundary of the adjoining structure

with K. = 0.9. The "limited-frame" concept recommended

recently $44] considers these joints to be fixed, which is

slightly optimistic.

Ne can therefore conclude that for most purposes it is

sufficient to consider only first remove members whicn are

directly connected in the plane of bending with the grillage

beams, and which have rotational springs K, = 0.9 at their

irst remove joints. Then

I,

C = 3.6 Eo ' . k.
i=l i

�7!

I,
j.

i=1 i

C

an<i R, R
y EI �8!
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Where highest accuracy is required, the stiffnesses of the

second remove members can be considered and equations �6!

and �5! should be used where K. is taken = 0.9  or 0.75 or 1
j

where ends j are known to be virtually pinned or clamped!.

When considering second remove joints it is possible for the

members adjoining one side of the grillage to form closed

cells with those from the other side. In sucn cases the

second remove members will be common to both sides, but little

loss in accuracy will result if this is ignored and the calcula-

tions for both sides of the grillage beams proceed independently.



In applying the method to the calculation of R  or R !x

for calculating general instability stresses it must be

remembered that these constraints have to be equal at both

ends of the beam for a'1 beams of the set. In this symmetrical

situation the relation between C and f, the "degree of fixity",

as used for xample in references f3] and [12!, is

f k+2 ' w~ere k EI
k Ci

Ship's beams have typical k values in the range 4 to 10, which

indicate constraints nearer clamped than simply supported.

Effect of axial com ression

The analysis thus far assumes the adjoining structure

provides constant linear springs C , C to the grillagex' y

boundaries which are unaffected by the magnitude of the axial

C, =C �- � !
yr y xGE

�9!
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force. Clearly, if the adjoining structure was itself also

liable to buckle in an overall manner then the constraint C it

could offer to the grillage would diminish as the axial stresses

approached the critical stress a for the adjoining structure.
cr

The relative wave lengths are also important. By analogy

with results obtained from the analysis for flange and wall

buckling of isotropic plate box girders in bending, and for

struts supported at a variety of spacings, it would appear to

be reasonable and a little conservative to reduce C to C by
y yr

the linear interaction formula



where a is the stress in the adjoining structure, and 0 its
x xGE

buckling value assuming edges pinned. This will slightly

invalidate the assumption of spring linearity used when

evaluating internal strain energy in Appendix I, but by

ignoring this the buckling stress would if anything be under-

estimated slightly. The agreement with another more complex

reduction factor was shown to be very good for vibration

problems [16].

Ef, for example, the main structure was a deck, and the

adjoining structure were deck side extensions or the side

walls of the ship or superstructure, a could be conserva-
xGE

tively estimated by assuming the unloaded edges to be simply

supported and that the edge stress was uniform across exten-

sions or the walls. With similar frame spacing to the Y beams

of the grillage this would for "long" structures  a > l! lead

approximately to

�0!

where 3 is the width. of the adjoining grillage and B the
A

width of the grillage being considered.

For calculating C it would in general be unwise to

assume any constraint provided by similar structure lying in

the plane of compression. R should be determined only for
X

those adjoining sti ffeners which lie normal to this plane

and which have no tendency to' buckle.



In certain cases the tendency of the adjoining structure

to general instability may be so strong that, but for their

attachment to the grillage, they would become unstable at a

stress lower than the buckling stress for the grillage with

sides simply supported. In these cases the grillage restrains

the adjoining structure. The value of R is then negative and

the buckling stress is reduced below its value for simple

supports. This is allowed for using the interaction formula.

Negative values of R are permissible in the equations and notation
Y

used for evaluating Kl l and K2 l used for evaluating 0 GE.lyl 2yl xGE'
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